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Stratified propelled wakes
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This paper presents experimental results on the wake of a propelled bluff body
towed at a constant horizontal speed in a linearly stratified fluid. Three regimes of the
wake have been found, depending on the angle of attack and on the ratio of drag force
to propeller thrust. Most of the experiments were obtained in a first regime where
a strong momentum flux is created in the wake, which can be oriented backward
or forward depending on the ratio of drag force to thrust of the propeller. The
velocity amplitude, wake width and Strouhal number of the wake can be predicted by
defining a momentum thickness based on the drag coefficient of the bluff body and
the thrust of the propeller. A second regime is obtained for a narrow band of towing
velocities, with a relative width of 4%, in which the momentum flux is found to
vanish. The wake is characterized by the velocity fluctuations; the scaling exponents
of the velocity, vorticity and width of the wake are measured. A third regime is
obtained for wakes with a small angle of attack, with a null momentum flux. The
mean profile of the wake is found to be asymmetric and its amplitude and wake width
are measured. Finally, the relevance of these results to the case of a real self-propelled
bluff body is discussed. The presence of weak internal waves or of weak fluctuations
of background velocity would lead to a wake in the regime with momentum flux, and
would allow prediction of the amplitude, width and Strouhal number of the wake.

1. Introduction
1.1. Towed-body wakes

Over a range of intermediate scales (1–100 m in the ocean, 100–1000 m in the
atmosphere) geophysical flows are strongly influenced by the background density
gradient, giving rise to numerous complex and interesting flow phenomena and
numerous problems for large-scale modelling efforts for which these complex processes
must appear as single coefficients modelling subgrid-scale processes. One of the
canonical problems receiving much attention has been the decay of initially turbulent
motions in a stably stratified environment. The review articles by Lin & Pao (1979) and
Riley & Lelong (2000) indicate the range of theoretical, numerical and experimental
approaches and progress over the years.

One such general problem involving decaying stratified turbulence is the bluff-
body wake at moderate and high Reynolds number, which also has certain practical
applications. The wakes of towed spheres are characterized by the persistence of large
coherent structures, even at high internal Froude number when such order might
not be expected to emerge and/or survive to late times (Lin & Pao 1979; Chomaz,
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Bonneton & Hopfinger 1993; Spedding, Browand & Fincham 1996; Spedding 1997).
Stratified fluids support internal wave motions and the waves emitted by both body
and wake have been studied in experiment and theory (Gilreath & Brandt 1985;
Bonneton, Chomaz & Hopfinger 1993; Spedding et al. 2000; Voisin 1991). Since
the coherent wake structures organize in a very ordered fashion (resembling a von
Kármán street), the pattern of wave packets emitted by them reflects that order.
Indeed if one characteristic were to be specified as diagnostic it is likely to be
the coherent structures themselves, and Spedding (2002) proposed that the spacing
and lengthscales of these structures, which could be rescaled over all experimentally
accessible Reynolds and Froude numbers, could be viewed this way. Voropayev &
Smirnov (2003) argued similarly based on experiments on low-Reynolds-number jets
in stratified fluids, deriving the same scaling law based on the momentum flux from
the jet source.

1.2. Computations and generalization

If all towed-sphere wakes are similar in mean and turbulent length and velocity
scales, and if the same scaling laws could be derived for objects that were not spheres
(essentially point momentum sources), then it seems plausible that the observed
characteristics are quite general and applicable to many cases of decaying flows in a
stratified fluid (Spedding 1997). It is reasonable to enquire whether the body geometry
has any influence at all in the far wake, and Meunier & Spedding (2004) showed
that all late wakes with a momentum defect can be rescaled by the momentum
flux, regardless of body geometry, for bluff, streamlined and sharp-edged bodies. As
a practical matter, the appropriate scaling can be looked up from published drag
coefficients for the different body shapes in non-stratifed flows.

The unimportance of initial conditions can also be inferred from the successful
simulation of the stratified wake by DNS (Gourlay et al. 2001) and LES computations
(Dommermuth et al. 2002; Diamessis, Domaradzki & Hesthaven 2005) where there
is no body, only a mean profile with turbulence superimposed upon it as a starting
condition for the flow. The simulations clearly show the emergence of the large-scale
(in the horizontal) coherent structures from the initially turbulent initial condition. In
the absence of the background density gradient, the same simulation conditions show
no emergent coherence.

1.3. Momentumless wakes

It seems then that all drag wakes can be treated similarly. However, another class
of application concerns the motion and disturbance field of underwater vehicles of
various types, and in this case, since they are self-propelled, the drag is balanced by
a local thrust, and the wake has no net momentum. The towed-sphere wake, where
turbulence production is due to the mean shear, might after all be a special case, not
only for naval applications, but also in geophysical flows, where different turbulence
production mechanisms may also have, at least on average, zero net momentum.

Indeed, if one searches analytically for similarity solutions, as in Tennekes & Lumley
(1972), Finson (1975) and Hassid (1980), then one finds scaling exponents for growth
of lengthscales and decay of mean and turbulence quantities that differ significantly
from the drag wake case. Using only the simplest eddy viscosity approximation,
for example, Tennekes & Lumley (1972) find that while axisymmetric wakes with
momentum show mean centreline velocities, UW ∼ x−2/3, and wake thickness, lW ∼ x1/3,
the solutions for the momentumless case are UW ∼ x−4/5, and lW ∼ x1/5. Finson (1975)
notes how the self-propelled wake represents a singular situation, requiring closure
approximations in higher-order turbulence quantities. Since production is no longer
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driven by a mean shear, it decays rapidly and does not balance the dissipation.
Consequently the far wake never becomes independent of initial conditions.

It may not be unrelated that the literature on experimental results is characterized
by some degree of scatter (Schooley & Stewart 1962; Naudascher 1965; Swanson,
Schetz & Jakubowski 1974; Chieng, Jakubowski & Schetz 1974; Lin & Pao 1974;
Schetz & Jakubowski 1975; Lin & Pao 1979; Higuchi & Kubota 1990; Sirviente
& Patel 1999, 2000a , b, 2001) as a wide variety of geometries and mechanisms for
production of the momentumless condition have been used. Higuchi & Kubota (1990)
in particular noted that the matched case of exact zero-momentum was different in
both mean and turbulence decay rates (they were significantly higher) and that a
sensitivity to initial conditions (degree of wall roughness) could be detected down to
x/D � 40–100.

With the exception of Schooley & Stewart (1962), Lin & Pao (1974) and Lin &
Pao (1979), none of the momentumless wakes have been in stratified conditions and
none have been studied at truly late times. The stratified sphere data of Spedding
et al. (1996), for example, extends to equivalent x/D � 4000. For most other studies,
x/D � 40–100. In stratified fluids, evolution times are expressed in units of buoyancy
frequency, N , and the data of Lin & Pao (1979) extend to Nt � 60, compared with
Nt � 3000 in Spedding et al. (1996). Focusing on the late-wake behaviour is not
simply an experimental expedient; it also avoids some of the confusion that results
when different wakes have different relaxation times to their asymptotic state, which
may only be observable very far downstream, as noted by Johansson, George &
Gourlay (2003).

Asymptotic theories for far wakes in both momentum and zero-momentum cases
have been given by Smirnov & Voropayev (2003) and Afanasyev (2004) but make no
statement on the appropriate form of the initial condition (in this case the distribution
of localized force doublets) and contain no notion of turbulence modelling. However,
such numerical modelling has been done recently by Chernykh, Demenkov &
Kostomakha (2001) and Chernykh, Ilyushin & Voropayeva (2003).

1.4. Objectives

There is, therefore, considerable uncertainty concerning the extension of previous
results from stratified, towed-body wakes to practical applications. Based on available
theoretical and experimental work, one would not expect similar scaling laws to apply
to either mean or turbulence quantities in the momentumless wake, and one might
also not expect the same insensitivity to details of the initial conditions. Currently,
there are no quantitative measurements to check these ideas for late wakes in stratified
flows. The objective of this paper is to measure wakes at, or close to, the self-propelled
point, under the same conditions as for the existing towed-body experiments. The
parameters varied will allow systematic investigation of the effect of the strength of
the background density gradient, the degree of thrust/under-thrust from the propeller,
and the shape of the solid body. The results will be compared for consistency, or
lack thereof, with the existing literature, and the relevance of such results to practical
flows will be re-examined.

2. Experiment and data analysis
2.1. Experimental devices

The materials and methods are similar to those described in detail in Spedding et al.
(1996). A bluff body with diameter D ≈ 3 cm is towed at a velocity UB along the
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Figure 1. Experimental set-up.

x-direction, in a water tank with horizontal dimensions 380×244 cm2. The bluff body
is maintained by three thin wires (d = 250 µm) under strong tension T , as shown on
figure 1. These tow wires slide along three guide cables with a minimum of vibration,
up to a tow speed of 1 m s−1. The disturbances created by the wakes of the tow wires
themselves (where Re < 250) are negligible in amplitude compared with the wake
of the bluff body. Furthermore, the obliquely mounted wires do not intersect the
measurement plane, which is at mid-body height in all experiments reported here.

The bluff body has a small propeller made of two flat plates with diameter close to
1 cm, which are fixed to a rotating axis with an angle of roughly 30◦ to the tow axis.
When the propeller rotates, some momentum is expelled backwards, which creates a
thrust on the bluff body. However, this does not change the velocity of the bluff body
which is fixed through the towing wires. The propeller axis is rotated by a motor
located inside the body, whose power comes from an external DC current generator.
The current is stopped when the body reaches the end of the tank, to prevent a strong
jet created by the propeller from impinging back upon the flow.

Two different bluff bodies have been studied, so the influence of the shape of
the object can be determined. The first is a cylinder with diameter D = 3.35 cm and
length of 15.6 cm. The sharp edges and the non-profiled shape create a very turbulent
wake. The second object is a prolate spheroid with diameter D = 2.54 cm and length
of 15.2 cm. The streamlined object creates a very weakly turbulent wake, and the
comparison between these two different body types – streamlined and sharp-edged –
can represent a range of possible initial conditions. The boundary layer remained
laminar since it was not tripped.

The tank is filled with stably stratified salt water, whose linear density gradient
creates a buoyancy frequency N = (−g/ρ0)

1/2(∂ρ/∂z)1/2 ≈ 2 rad s−1. The water depth,
H = 26 cm, is large compared to the diameter of the bluff bodies D ≈ 3 cm, and will be
considered infinite for the centreplane measurements described. Systematic variation
of D/H in Spedding (1997) showed no dependence for such values.

The flow is analysed by measuring horizontal two-dimensional instantaneous
velocity fields using particle image velocimetry. For flow seeding, small polystyrene
beads with a mean diameter 600–800 µm are carefully sorted in an auxiliary tank to
select a density of ρpart. = 1.0510 ± 0.0008. When introduced in the stratified fluid,
the particles settle at the specific height where the fluid has the same density ρpart.,
marking an isopycnal with a thickness �z ≈ 3 mm. The height of the isopycnal can
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be modified, by adding or removing small amounts of heavy fluid at the bottom of
the tank, so that it is located precisely at the mid-height centreplane of the bluff
body. The particles are illuminated by four 1 kW floodlights and their positions are
recorded on a Pulnix TM9701 CCD camera positioned above the tank, over a field
of view with dimensions 79 × 56 cm2. The digital images are treated by a variant of
the customized Correlation Image Velocimetry (CIV) algorithm described in detail
in Fincham & Spedding (1997). At each grid point, the cross-correlation peak is
estimated by a least-squares fit of a function constructed from an average of the
two spline-interpolated autocorrelation functions from each image correlation box.
The most serious contribution to peak-locking error is thus removed. The resulting
velocity fields correspond, at late stages, to the horizontal velocities (u, v) at the mid-
plane of the bluff body, since the vertical displacements vanish at late stages. The un-
certainties in the individual velocity measurements are of the order of 1%. The vertical
component of the vorticity ωz = ∂v/∂x − ∂u/∂y is calculated by a smoothing spline
interpolation of the velocity field with an uncertainty of less than 10%.

2.2. Parameters of the flow

Using the tow speed, UB , the diameter, D, of the bluff body, the kinematic viscosity of
the fluid ν =1.02 × 10−6 m2 s−1 and the buoyancy frequency N , two non-dimensional
parameters can be defined. The Reynolds number Re ≡ UBD/ν is varied between
5000 and 33 000. It was shown in Spedding et al. (1996) and Spedding (1997) that the
Reynolds number over this range has only a weak influence on late-time stratified
wakes and its independence has not been studied in further detail here. More attention
has been paid to the effect of the Froude number defined by F ≡ 2UB/ND, where N

is the buoyancy frequency. The Froude number is varied between 6 and 40, and for a
set of experiments with fixed N , it is proportional to the Reynolds number, since D

is not modified.
Meunier & Spedding (2004) demonstrated that for different shapes of bluff bodies,

all the characteristics of the wake rescale when using an effective diameter (introduced
as the momentum thickness by Tennekes & Lumley 1972, chapter 4) based on the
drag coefficient:

Deff = D
√

cD/2. (2.1)

In this formula, cD is the drag coefficient for an axisymmetric bluff body, based on
the surface area πD2/4 of the object in a plane normal to its axis. In this paper, Deff

is used to rescale the characteristics of the wakes with non-zero momentum. Since
Deff is the only relevant lengthscale in the late stages of the momentum wakes, an
effective Froude number can be defined as Feff = 2UB/NDeff .

The effective diameters of the bluff bodies were calculated from published
measurements of the drag coefficient (Blevins 1984) in a non-stratified fluid. For
the self-propelled cylinder, the drag coefficient of the cylinder alone is equal to
0.85, leading to an effective diameter Deff = 0.65D. The drag of the propeller is
neglected, since it does not significantly alter the drag coefficient. The drag coefficient
of a spheroid with aspect ratio 1:6 is equal to 0.176, for an effective diameter
Deff = 0.3D. The drag of the propeller has again been neglected, which is a reasonable
assumption when the propeller is rotating, i.e. when the towing velocity is close to
the momentumless velocity. However, when the propeller is not rotating, it creates an
additional drag which tends to increase Deff . This willl be discussed in more detail in
§ 4.
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2.3. Instantaneous and mean measurements

The non-dimensional downstream distance x/D, commonly used for non-stratified
wakes in water channels and wind tunnels, is related here to the elapsed time t in
the tow tank by x/D = UBt/D. However, in stratified wakes, time scales with the
buoyancy frequency at late stages, which defines a non-dimensional time Nt . The
downstream distance is thus related to the non-dimensional time by

x/D = F/2 Nt. (2.2)

Mean quantities are obtained by averages along the streamwise direction x at a given
time Nt and over the entire interrogation window length �x. They will be denoted
by 〈·〉x and were measured on 60–80 velocity vectors. They correspond to temporal
averages that would be obtained in a wind tunnel or a water channel configuration
at late stages. Indeed both averages are identical when the downstream distance x is
much larger than the interrogation window length �x. This approximation is valid
up to one order of magnitude for all cases here, when Nt is greater than 50.

The streamwise velocity is separated into mean and fluctuating parts,

(u, v) = (U, 0) + (u′, v′), (2.3)

and the following mean quantities are studied: the mean streamwise velocity U = 〈u〉x ,
the quadratic fluctuations of velocity u∗ = 〈u′2 + v′2〉1/2

x and the crossed fluctuations
of velocity 〈u′v′〉x . All of these quantities depend on the transverse coordinate y and
on the non-dimensional time Nt .

3. Three regimes of the wake
Seven series of experiments were run, three with the propelled cylinder and four

with the propelled spheroid. Each series was conducted in the same manner: the
angular velocity of the propeller was fixed at a constant rate, the bluff body was
towed with a constant velocity, and the velocity fields were estimated by CIV. From
one experiment to the next, the tow speed was increased.

The patterns of the vertical vorticity fields are summarized in figure 2. The vertical
component of the vorticity ωz is shown as a function of time for three different
tow speeds. The bluff bodies are always towed from right to left, i.e. in the positive
x-direction.

For low tow speeds, the momentum flux expelled by the propeller is much higher
than the momentum flux entrained by the bluff body due to the drag. The self-
propelled body thus creates a jet of fluid toward the right (i.e. in the −x-direction),
although the bluff body moves toward the left, as seen in figure 2(a), where the
coherent structures move slowly toward the right. Since the wake is composed of
two layers of opposite-signed vorticity, positive for y negative (y−) and negative for
y positive (y+), net momentum is ejected backward by the bluff body. The jet then
destabilizes into coherent vortices, which merge gradually, increasing the width of the
wake.

On the contrary, for high tow speeds, there is more momentum flux created by
the drag force than expelled by the propeller. Some fluid follows the bluff body
and creates a leftward-moving jet. The vorticity fields look very similar to those of
figure 2(a) except that the positive vorticity is found for y+ and the negative vorticity
for y−. The wake is similar to that of a non-propelled bluff body, which is recovered
when the drag force is much higher than the thrust of the propeller. In either of the
two previous cases (high or low velocities), some momentum is created by the bluff
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Figure 2. Vorticity fields of a towed body with a rotating propeller for Nt =
[12, 30, 60, 120, 300] from top to bottom. The bodies are towed from right to left at a speed
(a) lower than the momentumless velocity, (b) equal to the mometumless velocity, and (c) equal
to the momentumless velocity with an angle of attack. The bluff body is a prolate spheroid for
(a) and (c) and a cylinder for (b). The field of view has dimensions 80 × 60 cm2, corresponding
to 32 × 23 diameters. F ≈ 20; Re ≈ 15 000.

body and the treatment of the data is essentially the same, as described in detail in
§ 4, which focuses on this momentum regime.

Between the two previous cases with a backward jet at small UB and a forward jet
at high UB , there is a limiting case where the jet eventually vanishes. It happens for
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a particular (critical) value of the tow speed UB = UC , where no net momentum is
created. Intuitively, its value is proportional to the angular velocity of the propeller.
UC is thus a way of measuring the angular velocity of the propeller, and to recalibrate
it with no need to take into account the shape of the propeller and the bluff body. In
the experiments, this critical momentumless velocity is defined by the criterion that
the sum of the mean profile vanishes:

UB = UC when

∫ ∞

−∞
〈u〉x dy = 0. (3.1)

This criterion defines UC to within ±2%, and if UB is changed by more than 2%, the
late stages of the wake resemble one of the cases mentioned above (high or low UB).
Only by careful matching of UB to UC was it possible to reach the momentumless
regime, for which the mean profile of velocity vanishes in the incoherent fluctuations
of the measurements. An example is shown in figure 2(b). The two layers of vorticity
found in the momentum regime have disappeared and the vorticity field contains many
vortices of both signs, with no organized longitudinal spatial structure. Like-signed
vortices merge, leading to larger scales of motion, whose peak vorticity magnitude
decreases gradually with time. This momentumless regime will be described in detail
in § 5.

Finally, a third regime has been found incidentally. In the first experiments, a
slight angle of attack was present between the axis of the bluff body and the towing
direction. The angle of attack (measured between the guide cable and the axis of
the propeller) was smaller than 1◦ and had no influence on the momentum regime.
However, when the tow speed was close to the momentumless velocity UC , the wake
became asymmetric. Since the bluff body was oriented slightly toward y+, the fluid
expelled by the propeller was slightly to y−. This leads to three layers of vorticity: two
layers of positive vorticity surround a layer of negative vorticity, as can be observed
in figure 2(c). This regime is very similar to the momentum regime except that there
are three layers of vorticity instead of two. These three layers destabilize into vortices,
as in the momentum regime, which merge into bigger vortices, thus increasing the
wake width. This regime will be described in detail in § 6.

4. Momentum regime
4.1. Mean profiles

In the momentum regime (figure 2a), the mean velocity is larger than the fluctuations.
Figure 3 shows the transverse profile of mean velocity U (y) = 〈u〉x(y) as filled symbols,
together with the profile of the quadratic fluctuations of velocity u∗ = 〈u′2 + v′2〉1/2

x as
open symbols. It is clear that the fluctuations are smaller than the mean velocity up
to Nt = 300.

Figure 3 shows that the mean profiles of velocity can be fitted well by a Gaussian
function (shown as a solid line on figure 3) with amplitude U0 and half-width L0,

U (y) = U0 e−y2 / 2L2
0 . (4.1)

As time increases, the amplitude U0 decreases and the wake width L0 increases, as is
found in both stratified and non-stratified wakes of non-propelled bodies.

In the case of propelled bodies, the amplitude U0 of the wake can be either positive
or negative, depending on whether the towing velocity UB is larger or smaller than
the critical velocity UC . Indeed, when UC is smaller than UB , i.e. when the propeller
rotates slowly, the bluff body is similar to a non-propelled body and the amplitude



Stratified propelled wakes 237

–4

0

0.01

0

–0.02

–0.01

0.02

0 4 –4 0
y/Dy/D

(a) (b)

�
u�

x/
U

B

4

Figure 3. Profile of mean velocity (filled symbols) and quadratic fluctuations 〈u′2 + v′2〉1/2
x

(open symbols) at times Nt = 20 (�), Nt = 100 (�) and Nt = 300 (�). The spheroid is towed
at (a) a speed larger than the momentumless velocity (UB = 1.13UC) and (b) a speed smaller
than the momentumless velocity (UB = 0.88UC). The Froude and the Reynolds numbers are:
(a) F = 14, Re= 11 000; (b) F = 18, Re= 9000.

of the wake U0 is positive. This means that some fluid is entrained behind the body
by the drag. On the other hand, when UC is larger than UB , i.e. when the body is
towed slowly, some fluid is expelled backwards by the propeller, creating a jet in the
−x-direction, which gives a negative amplitude U0.

As UC/UB is increased (obtained in the experiments by decreasing UB and keeping
UC constant), the amplitude of the wake decreases continuously from positive to
negative values. This is shown in figure 4 where U0/UB F

2/3
eff is plotted as a function

of the ratio UC/UB for Nt = 100. All the results collapse well in these units. The curve
has a steep gradient at UC = UB so even a very small variation in UB can create a
large amplitude U0 in the wake. This explains why it was very hard in the experiment
to obtain a momentumless regime, and why most of the experiments were found to
be in the momentum regime. When the tow speed UB differs from the momentumless
velocity UC by more than 2%, the amplitude of the wake U0 cannot be neglected and
the wake is in the momentum regime.

4.2. A new definition of the momentum thickness for propelled bluff bodies

The absolute amplitude of a stratified wake depends strongly on the shape of the
bluff body (see Meunier & Spedding 2004). However, the results were found to
collapse when using an effective diameter based on the drag coefficient and defined
by equation (2.1), leading to a universal law for non-propelled bodies:

U0

UB

F
2/3
eff = 6.6(Nt)−0.76, (4.2)

where Feff = 2UB/NDeff . In the case of propelled bodies, this law is expected to apply
only when the propeller is not rotating, i.e. when UC = 0, shown as a star in figure 4.
It is 30% smaller than the experimental value for a spheroid, which can be explained
quantitatively by the additional drag created by the non-rotating propeller.

The evolution of U0(Nt) is shown in figure 5(a) for varying tow speeds UB . The
dashed line shows the empirical curve for non-propelled bodies given by equation (4.2).
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Figure 4. Amplitude of the mean profile of velocity as a function of the velocity of the
propeller for a spheroid (closed symbols) and a cylinder (open symbols) at Nt = 100. The solid
star represents the prediction given by Meunier & Spedding (2004) for non-propelled bodies.
The solid line is from equation (4.5), developed in § 4.2.
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Figure 5. Amplitude of the mean profile of velocity for a cylinder (open symbols) and
for a spheroid (closed symbols) using (a) the effective diameter defined by (2.1) and
(b) the momentum thickness defined by (4.3). The ratios of UB/UC of towed and
momentumless velocity are [0.994, 0.959, 1.063, 1.125, 0.930, 1.050] for [�, �, �, �, �, �].
F = [15, 14, 27, 18, 23, 41] and Re= [10.5, 10.1, 28.4, 11.4, 15.2, 26.6] × 103 respectively.

In all these experiments, the scaling exponent seems to be equal at late stages, but
the curves always remain below the non-propelled case. The model must therefore be
modified to take into account the action of the propeller.

In the case of non-propelled bodies, the dynamics of the wake are mainly governed
by the momentum flux, which is a conserved quantity of the wake. Indeed, the effective
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diameter Deff is simply the momentum thickness, already introduced in non-stratified
wakes by (Tennekes & Lumley 1972, chapter 4), and which is found by equating the
momentum flux J = ρ 1

4
πD2

effU 2
B and the drag force Fdrag = cD

1
2
ρU 2

B
1
4
πD2.

For propelled bodies, the momentum comes from fluid entrained by the drag, and
also from fluid expelled by the propeller, which creates the thrust: J =Fdrag − Fthrust.
By definition of the momentumless velocity UC , the thrust is equal to the drag
for UB =UC , which leads to an expression for the thrust: Fthrust = cD

1
2
ρU 2

C
1
4
πD2.

A momentum thickness can thus be defined in the case of propelled bodies as
ρ 1

4
πD2

momU 2
B = |J | = |Fdrag − Fthrust|, which can be simplified into

Dmom = D
√

cD/2
√∣∣1 − U 2

C/U 2
B

∣∣. (4.3)

The universal law (4.2) found for non-propelled bodies should be modified to

|U0|
UB

F 2/3
mom = 6.6(Nt)−0.76, (4.4)

where the momentum Froude number is defined using the momentum thickness,
Fmom = 2UB/NDmom. Equation (4.4) is plotted in figure 5(b) as a dashed line. All
the results collapse onto this prediction to within 25%, even though they were
initially as much as 6 times smaller. Furthermore, if the momentum Froude number
in equation (4.4) is explicitly written with (4.3) one arrives at an expression for the
amplitude U0 as a function of the ratio UC/UB ,

|U0|
UB

F
2/3
eff = 6.6(Nt)−0.76|1 − (UC/UB)2|1/3. (4.5)

This curve is plotted in figure 4 as a solid line. The vertical slope at UC = UB , observed
in the experimental data, comes from the power 1/3 of the term UB − UC in (4.5),
and the dependence on |UB − UC |1/3 explains the overall features of the curve.

4.3. Wake width and Strouhal number

The wake width L0 of the mean profile of velocity, defined by equation (4.1), is plotted
in figure 6 as a function of time. The wake width increases in time with a power law
close to 0.3. For non-propelled bodies, it was shown in Meunier & Spedding (2004)
that the wake width of different bluff bodies collapses when the lengthscale is defined
as the effective diameter Deff , and can be written as

L0

Deff

F −0.35
eff = 0.275(Nt)0.35. (4.6)

This prediction is plotted in figure 6(a) as a dashed line. The experimental values
obtained for propelled bodies are smaller than the theoretical prediction for non-
propelled bodies, by a factor almost two. Recall that the wake is slower for propelled
bodies, with a smaller amplitude U0, and the wake width thus increases more slowly
at early stages and remains smaller than for a non-propelled body.

To adapt the prediction made for non-propelled bodies to the case of propelled
bodies, the wake width can be normalized by the momentum thickness Dmom defined
in (4.3), rather than by the effective diameter Deff . If the Froude number is also
defined using the momentum thickness Dmom, (4.6) is modified to

L0

Dmom

F −0.35
mom = 0.275(Nt)0.35. (4.7)
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Figure 6. Wake half-width of the mean profile of velocity for a cylinder (open symbols)
and for a spheroid (closed symbols) using (a) the effective diameter and (b) the momentum
thickness. Symbols as in figure 5.

The modified prediction is shown in figure 6(b) by the dashed line. The experimental
data collapse reasonably well onto this power law at late stages. The measurements are
centred on the dashed line, although the variation in the measurements is relatively
high (close to 30%). The scatter is due to the small amplitude of the wake U0

compared to the towing velocity UB of the bluff body: U0/UB can be as small as
0.1%. It is surprising to see that the simple rescaling using the momentum thickness
Dmom is also efficient for the wake width, as it was for the velocity defect. It confirms
the fact that the late stages are mainly governed by the momentum, without memory
of the lengthscale of the bluff body. However, in the early stages, the wake width is
slightly higher than the value given by the prediction (4.7). This might be due to a
transient effect: when the towing velocity is close to the momentumless velocity, the
wake motions are very slow and it takes a longer time (which could be rescaled by
D/(UB − UC) rather than D/UB) for the wake to reach the asymptotic self-preserved
state.

The Strouhal number can be measured from the instantaneous vorticity fields, as
explained in Spedding et al. (1996) and Spedding (2002) for the stratified wake of a
sphere. The Strouhal number can be defined as

St = D/λx, (4.8)

where λx is the mean streamwise distance between two vortices of the same sign. It
was shown in Meunier & Spedding (2004) that a general law for the Strouhal number
can be found in the case of non-propelled bodies by defining the Strouhal number
using the effective diameter,

St eff = Deff/λx. (4.9)

With this definition all the measurements of different bluff bodies collapsed onto a
universal law,

St effF 0.34
eff = 0.823(Nt)−0.34, (4.10)

plotted in figure 7(a) as a dashed line. The experimental values are twice as large,
but decay at the same rate. Recall that propelled wakes develop more slowly than
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non-propelled wakes (since U0 is smaller), so the Strouhal number also decreases
more slowly at early stages, and stays larger than for non-propelled bodies.

If the Strouhal number is defined using the momentum thickness Dmom defined in
(4.3), and if the Froude number is also defined using the momentum thickness Dmom,
the prediction for non-propelled bodies is

StmomF 0.34
mom = 0.823(Nt)−0.34, (4.11)

and is plotted as a dashed line in figure 7(b). The experimental data collapse onto the
prediction, within 20%. This shows again that the wake is governed by the momentum
flux at late stages.

4.4. Fluctuating quantities

In self-preserved, turbulent wakes, the mean profile of the wake diffuses due to the
Reynolds stress, which is sustained by the mean shear. The hypothesis of a constant
eddy viscosity can be checked for the case of stratified and propelled wakes, and if
νT is constant, the profile of Reynolds stress may be supposed to be proportional to
the mean shear,

〈u′v′〉x = νT

∂U

∂y
. (4.12)

Profiles of Reynolds stress, or velocity cross-fluctuations, are shown in figure 8 for
tow speeds, UB , close to the critical momentumless velocity, UC . The Reynolds stress
are very weak and 〈u′v′〉1/2 is always smaller than 0.1% of UB . When UB >UC , the
mean profile has a positive amplitude U0; the mean shear is thus positive for y−

and negative for y+. Figure 8(a) shows that the cross-fluctuations follow the same
trend for UB > UC , supporting the assumption that the profile of Reynolds stress
is proportional to the mean shear, with a constant eddy viscosity. When the bluff
body is towed at a velocity smaller than the momentumless velocity, the amplitude
of the wake U0 is negative, which gives negative Reynolds stress for y− and positive
Reynolds stress for y+, as shown on figure 8(b), again proportional to the mean shear.
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number, defined by (4.13) and (4.14). Symbols as in figure 5.

Since the mean profile of velocity is approximated well by a Gaussian (4.1) with
amplitude U0, the Reynolds stress profile should be fitted well by the derivative of a
Gaussian function with an amplitude A and a width L′

0:

〈u′v′〉x(y) = −A
y

L′
0

e−y2/L′
0
2

. (4.13)

The amplitude A should be similar to νT U0 and the width L′
0 should be similar to

the wake width L0. These two fitting constants have been measured and are shown
in figure 9. The width of the cross-fluctuation profile L′

0 is close to the wake width
L0 (figure 9a) although the variation in the measurements is large. This supports
once again the hypothesis of a constant eddy viscosity. The amplitude A of the
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cross-fluctuation profile is linked to the turbulent Reynolds number RT by

RT =
|U0|L0

νT

=
U0|U0|

A
. (4.14)

The turbulent Reynolds number is plotted in figure 9(b) as a function of time. The
dashed line represents the value RT = 15 found for non-propelled bodies at late times
(Nt > 100). Initially, RT can be significantly higher than its asymptotic value for
Nt > 100, which is the same result as for towed bodies, suggesting that, just as in
the non-propelled case for these body shapes, an equilibrium state is only reached at
comparatively late times.

For a complete analysis of the turbulent fluctuations, the turbulent kinetic energy,
equal to half the quadratic fluctuations of velocity u∗ = 〈u′2 + v′2〉1/2 is measured. A
profile of quadratic fluctuations of velocity was shown in figure 3, and seen to be very
small compared to the mean profile. Moreover, the presence of large internal waves
in the tank creates a background of velocity variations, which are of the order of the
velocity fluctuations created by the wake. This background can be seen on figure 3
at the edges of the profile. The amplitude of the quadratic fluctuations was estimated
by measuring the difference between the maximum and the minimum of the profile
of quadratic fluctuations,

u′′
0 = max

(
〈u′2 + v′2〉1/2

)
− min

(
〈u′2 + v′2〉1/2

)
. (4.15)

This amplitude is plotted in figure 10(a) as a function of time. The measurements are
not very clean, but the ratio u′′

0/U0 is close to the value 0.25, which was found for
non-propelled bodies and which is shown as a dashed line on figure 10(a).

Finally, the width of the profile of quadratic fluctuations was estimated by a fitting
function introduced by Dommermuth et al. (2002):

〈u′2 + v′2〉1/2 = B + C
(
1 + y2

/
L′′

0
2)

e−y2/2L′′
0
2

. (4.16)

L′′
0 is normalized by the wake width L0 and plotted in figure 10(b). The ratio L′′

0/L0

is slightly smaller than one, as in the case of non-propelled bodies. This may be due
to transient effects, since the self-preserved state is only reached for very late stages.
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5. Momentumless regime
As demonstrated in § 3, the wake presents a different structure when the towing

velocity UB of the bluff body is equal to the momentumless velocity UC . The vorticity
fields do not contain two layers of opposite-sign vorticity, as in the momentum regime
(UB 
= UC), but they contain a disordered array of vortices of different signs. There
seems to be no organized structure, except that the vortices are located in a compact
domain that trails the body and widens with time.

The momentumless regime is only accessible when the relative difference between
UB and UC is smaller than 2%. The primary difficulty in the experiments was
in determining UC , which was done by iteration for each angular velocity of the
propeller, so that for each experiment, the mean velocity profile was measured and
the towing velocity was then adjusted for the next experiment. Since at least 20
minutes waiting time (frequently many times this, depending on flow conditions) was
required between two experiments for the fluid to be effectively at rest, a long time
(usually a few days) was needed to determine the exact momentumless velocity for
a given angular velocity of the propeller. Although this momentumless regime might
represent the wakes of self-propelled bodies, it was evidently very hard to obtain in
the experiments, and was very fragile compared with the momentum regime. The
question of whether the wake of a real self-propelled body is in the momentum or in
the momentumless regime will be discussed in § 7.

When |UB–UC |/UB < 2% the signal:noise ratio is (by definition) small, and
particular care was taken to repeat each experiment several times, and to remove
all spurious results caused by contamination from wave motions or imperfect
boundary conditions. All points shown are averages of the remaining two to four
clean experiments.

5.1. A null mean profile?

When UB > UC , U0 is positive and when UB <UC , U0 is negative, so U0 might be
expected to vanish when UB = UC . However, in the constant turbulent eddy viscosity
assumption of Tennekes & Lumley (1972), it is only the integral of the mean profile
that vanishes, and not the mean profile itself. The mean profile is supposed to contain
a central lobe with negative velocity, surrounded by two symmetric lobes of positive
velocity. This shape of the mean velocity profile ensures that the turbulent fluctuations
are still sustained by the mean shear. More sophisticated treatments (Finson 1975;
Hassid 1980) invoke assumptions on higher-order closure of the fluctuating velocities,
but some coherent form of the mean radial profile of the velocity differences is still
required. Some kind of assumption like this is a necessary condition in order to
impose self-similar solutions.

The measured mean velocity profiles are plotted in figure 11 as closed symbols, for
the wake of a cylinder and the wake of a spheroid. The mean profile has no coherent
shape, and seems to be smaller than the incoherent fluctuations in the measurements.
It does not contain the features described in non-stratified wakes, with a positive
lobe surrounded by two negative lobes. It is possible that such a structure of the
wake could be recovered if the measurement resolution were higher (or, equivalently,
at smaller x/D), or if the generating geometry were different. However, figure 11
shows that the quadratic fluctuations of velocity are larger than the mean velocity:
they can be as much as five times larger in the case of the cylinder. This contradicts
the assumption that the turbulent fluctuations are sustained by the mean shear. This
regime is best described as a turbulent flow, with no mean shear, which diffuses and
dissipates by self-induction. Such a description of the wake is consistent (of course)
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with the vorticity fields of figure 2(b), where no organized structure can be found.
Now, the evolution of the wake should be governed by the fluctuations of the velocity
rather than by the mean velocity of the wake.

5.2. Quadratic fluctuations

The profile of quadratic fluctuations of velocity u∗ = 〈u′2+v′2〉1/2 is plotted in figure 11
as open symbols, for a cylinder and for a spheroid. The quadratic fluctuations are
very small: between 0.1% and 0.5% of the towing velocity UB . Moreover, the bluff
body creates internal waves of large amplitude, propagating in the x-direction, which
remain in the tank for a long time due to reflection on the walls. Their amplitude can
be measured by the average of the streamwise velocity in the y-direction 〈u〉y(x) and
they were removed from the velocity field before measuring the quadratic fluctuations
of velocity. However, these internal waves also created some small-scale variations
which cannot be averaged out in this way, especially far from the wake (for large |y|),
which leads to a positive background in the profiles of quadratic velocity fluctuations.
Consequently the width of the wake cannot be measured accurately using the profile
of velocity fluctuations. It will be instead measured using the profile of vorticity
flucuations (see § 5.3), which are not perturbed by the internal waves since the
internal waves do not contain any vertical vorticity.

The maximum of the profile of velocity fluctuations can be relatively accurately
measured. It is plotted in figure 12 for the five different configurations studied for
this momentumless regime. Each curve is the average of two to four experiments. The
variation in the measurements is represented by the size of the symbols.

The maximum of the quadratic fluctuations u∗
max = max(〈u′2 + v′2〉1/2) is plotted as

u∗
max/UBF 0.75 so the results may be compared with the measurements obtained by

Lin & Pao (1979) for a streamlined spheroid, plotted as a solid line on this figure.
The current measurements are significantly smaller, the velocity being four times
smaller at early stages. Moreover, assuming the quadratic velocity has a power law
u∗

max ∼ (Nt)αu∗ , Lin & Pao measured a decay exponent of −0.76, whereas we find

αu∗ = −0.40 ± 0.04. (5.1)
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with a large propeller (∗). The solid line corresponds to the experimental fit given by Lin &
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slender body given by Meunier and Spedding (2004). F =[15, 40, 12, 15, 25] for experiments
[�, �, ∗, �, �] with Re= [10, 25, 11, 13, 27] × 103 respectively.

The disagreement comes partly from the fact that the results of Lin & Pao (1979)
were restricted to the early stages of the wake: their scaling is valid for 1 < Nt < 20
while our results cover 10 <Nt < 300. At the early stages, the flow is mainly three-
dimensional, which might explain why they measure a decay exponent αu∗ = −0.76,
more in agreement with the theoretical prediction for a non-stratified self-propelled
wake (αu = −4/5). Upon close inspection, their measurements even show that the
quadratic fluctuations of velocity depart from the initial power law for Nt > 20, as
the authors noted. A decay exponent for this latter regime can be roughly estimated
to be αu = −0.4 for 20< Nt < 60, in close agreement with our value for 10 <Nt < 300.

In figure 12, two experiments with the same bluff body (a cylinder) and with two
different sizes of propeller have been reported: the case of a large propeller is plotted
by stars and the case of a small propeller is plotted by open symbols. The velocity
fluctuations are 60% higher in the case of a small propeller. Evidently the results
cannot be collapsed by simply using the drag coefficient of the bluff body alone. The
amplitude of the quadratic fluctuations depends on the shape of the bluff body and
the propeller, and not only on the drag coefficient of the bluff body (here, the drag
of the propeller is small compared to the drag of the cylinder). It is possible that the
fluctuations depend on the shape of the bluff body close to the propeller, since the
propeller draws the fluid inward and deforms the set of streamlines that would be
created in the absence of a propeller. The small propeller may draw the fluid into a
smaller cross-section, forcing streamlines closer to the edges of the cylinder, and so
creating strong turbulence.

It can be noted that the measurements do not collapse with respect to the Froude
number when the velocity fluctuation is multiplied by F 0.75. A better collapse of
the measurements is obtained when the velocity fluctuation is multiplied by F 0.25.
However, the Froude number was varied with a factor 3 only, and the measurements
should be repeated on a larger range of Froude numbers for this result to be
confirmed.
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slender spheroid (closed symbols), a cylinder with a small propeller (open symbols) and a
cylinder with a large propeller (∗). Symbols as in figure 12.

5.3. Vorticity fluctuations

As noted in § 5.2, the vorticity profiles are not disturbed by internal waves which do not
contain any vertical vorticity. The profiles of mean vorticity 〈ω〉 and of the quadratic

fluctations of vorticity ω∗ =
√

〈ω2〉x are therefore less variable than the profiles
of velocity. They are plotted in figure 13 for a cylinder and a spheroid. The mean
vorticity is very small compared with the fluctuations. This shows again that the wake
seems to be disordered, closer to a layer of free turbulence rather than to turbulence
forced by the mean shear.

The maximum of the quadratic fluctuations of vorticity ω∗
max is plotted in figure 14

as a function of time for a cylinder and for a spheroid. As previously noted, it is not
possible to rescale the experiments by simply using the effective diameter of the bluff
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body, since the size of the propeller strongly modifies the amplitude of the vorticity
fluctuations. However, a reasonable collapse of the measurements has been obtained
by multiplying the amplitude by the Froude number to the power 0.5. This empirical
scaling (which has no external justification) needs to be verified since the Froude
number was only varied with of a factor 3. Assuming the vorticity fluctuations follow
a power law Ntαω , the decay exponent αω can be estimated as

αω = −0.61 ± 0.02. (5.2)

Finally, the maximum of the absolute value of the vorticity |ω|max on the centreplane
has been measured and is plotted as a function of time in figure 15; |ω|max is constant
and roughly equal to three times the maximum of the quadratic fluctuations of
vorticity, ω∗

max. This implies that some aspect of the spatial structure of the wake is
constant, and that the wake may be self-similar in this measure.

5.4. Wake width

Since the profiles of quadratic fluctuations are relatively clean, it is possible to measure
the width Lω of the profile at mid-height, defined as the range for which the quadratic
vorticity is larger than half the maximum quadratic vorticity:

ω∗(y) >
ω∗

max

2
for − Lω

2
< y <

Lω

2
. (5.3)

The width Lω is plotted in figure 16 for five different set of experiments. In figure 16(a),
the width is normalized using the effective diameter of the bluff body, as in the case
of a momentum wake (see § 4.3). It seems that the experiments for a cylinder with
a large (stars) and with a small propeller (open symbols) give the same result. This
indicates that the wake width may be independent of the real shape of the bluff body
and that it may be collapsed using the drag coefficient. Indeed, when plotting the
wake width multiplied by the drag coefficient to the power −0.8, an excellent collapse
is obtained for the case of both a spheroid and a cylinder, as is shown in figure 16(b).



Stratified propelled wakes 249

101 102

100

101

(a)

101 102

100

101

NtNt
(L

ω
/D

)F
–0

.2
 c

D–0
.8

(L
ω

/D
ef

f)
F

ef
f

–0
.3

5

(b)

Figure 16. Width Lω of the quadratic fluctuations of vorticity ω∗ = 〈ω2〉1/2
x for a slender

spheroid (closed symbols), a cylinder with a small propeller (open symbols) and a cylinder
with a large propeller (∗), (a) normalized using the effective diameter and (b) multiplied by
c−0.8
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(Meunier & Spedding 2004). Symbols as in figure 12.

The best fit for all the data is given by

Lω

D
= 1.8(Nt)0.18F 0.2c0.8

D . (5.4)

This wake width is three times smaller than the one measured by Lin & Pao (1979),
plotted as a solid line on figure 16. However, this is not a real disagreement since they
measured the width for which the wake appeared turbulent on the corresponding
shadowgraph visualizations, which will be larger than the width at mid-height. The
main disagreement comes from the fact that the exponent for their power law is equal
to +0.4 whereas here it is

αLω
= +0.18 ± 0.05. (5.5)

Part of the discrepancy may again come from the fact that their measurements were
obtained for early stages (Nt < 20) and do not extrapolate simply to the late stages
(10 < Nt < 300) measured here, as noted previously.

An exponent for the wake width can also be estimated as follows. If the velocity
fluctuations have an exponent αu∗ and if the vorticity fluctuations have an exponent
αω, the wake width should have an exponent αLω

= αu∗ − αω since the vorticity scales
as ω ∼ u/L. This formula together with the measurements of αu∗ in (5.1) and αω in
(5.2) leads to a value of the exponent for the wake width αLω

= +0.21 ± 0.03, in good
agreement with (5.5).

6. Asymmetric momentumless regime
This section focuses on the flow obtained when a slight angle of attack is present

between the axis of the bluff body and the towing velocity. This configuration was
first obtained unintentionally, but it revealed interesting features of the flow, and is
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an example of the sensitive dependence on initial conditions that is a unique feature
of the momentumless case.

As shown in figure 2(c), the vorticity fields obtained in the asymmetric regime are
very organized, but differ from the ones obtained in the momentum regime (shown
on figure 2a). The instantaneous vorticity fields contain three layers of vorticity in the
asymmetric regime, whereas only two layers of vorticity are present in the momentum
regime. In this experiment, the angle of attack was positive (toward the left), i.e. the
nose of the bluff body was located at a small y+. This leads to a layer of negative
vorticity surrounded by two layers of positive vorticity. For such a distribution of
vorticity, it can be deduced that the velocity profile must be asymmetric, as the data in
figure 17 show. Although the angle of attack could not be measured accurately, it was
estimated to be between 0.5◦ and 1◦. The experiment was carried out for UB = UC ,
which means that the integral of the mean profile

∫
U (y)dy is equal to zero, as can be

seen on figure 17. The towing velocity UB had to be very close to the momentumless
velocity for the profile to be asymmetric: a relative difference of 1% was sufficient
to modify the profile from asymmetric to symmetric. In the asymmetric regime, the
mean profile of velocity contains two lobes, a negative lobe of velocity for y− and a
positive lobe for y+. This accords with the fact that the angle of attack is toward y+:
the propeller is located at a small y−, and more fluid is expelled backwards at y−,
creating a negative velocity for y−. On the other hand, for y+, the jet of the propeller
is weaker and more fluid is more entrained by the drag of the bluff body, creating a
positive lobe of velocity for y+.

Figure 17 also shows the quadratic fluctuations of velocity u∗ ≡ 〈u′2 + v′2〉1/2
x as

open symbols. These fluctuations are slightly smaller than the mean profile, indicating
that the wake may again be governed by the mean shear rather than by the turbulent
fluctuations, as in the momentum regime. The measurements of the mean profile are
clean enough and it is possible to fit the mean velocity by an odd function with an
amplitude U1 and a width L1,

U (y) = U1

y

L1

e−y/2L2
1 . (6.1)
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Figure 18. Amplitude (a) and wake width (b) of the mean profile of velocity for a spheroid
with a Froude number F = 25 and Re= 16 000.

This function is convenient because it is a self-similar solution of the diffusion
equation ∂U/∂t = νT ∂2U/∂y2 which governs the wake in a non-stratified fluid. The
fitting function is plotted in figure 17 as a solid line and shows a good fit to the
experimental data, and hence a reasonable determination of the amplitude U1 and
the width L1 of the wake as a function of time, which are plotted in figure 18 for
three experiments in the same configuration (angle of attack, Froude number and
Reynolds number).

The amplitude U1 of the asymmetric mean profile is plotted in figure 18(a) and is
compared with the prediction for a non-propelled bluff body given by equation (4.2),
shown as a dashed line. The amplitude U1 is four times weaker than in the
non-propelled case, as expected since the experiments are conducted close to the
momentumless velocity UC and with a slight angle of attack. The amplitude should
strongly depend on the angle of attack and it should vanish when the angle of
attack vanishes. Hence, there was no attempt to predict the multiplying factor for the
variation of U1. However, it is possible that the scaling exponent may be universal
in this regime, independent of the drag coefficient or the angle of attack. For this
experiment, assuming the amplitude scales as U1 ∼ NtαU1 , the best fit (plotted as a
solid line on figure 18a) is

αU1
= −0.6 ± 0.06. (6.2)

This value is smaller than the value αU = −0.76 found for momentum wakes, described
in detail in § 4, but it is larger than the value αu∗ = −0.4 found for the symmetric
momentumless wakes, described in § 5. Further experiments would be required to
confirm this result, and its possible dependence on Froude number and angle of
attack.

Figure 18(b) shows the wake width normalized by the effective diameter. It is slightly
smaller than in the case of a non-propelled wake, represented by the dashed line.
This tendency was also obtained in the momentum regime – the propeller decreased
the wake width (see figure 6a). However, in this case, it is not possible to use the
momentum thickness Dmom defined by equation (4.3), since it is zero.

The wake width might be collapsed using a lengthscale based upon the (small but
finite) angle of attack, but this was not feasible here since the angle of attack has not
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been measured with sufficient precision. Nevertheless, assuming that the wake width
scales as L1 ∼ NtαL1 , the scaling exponent of the wake width may yet be universal. A
best fit of the results (shown as a solid line on figure 18b) gives

αL1
= +0.31 ± 0.03, (6.3)

which is indistinguishable from the value of αL =+0.35 obtained for momentum
wakes but larger than the value of αLω

= +0.18 obtained for symmetric momentumless
wakes.

To conclude, it seems that in the asymmetric momentumless regime, the scaling
exponents are between the scaling exponents of the momentum regime and the scaling
exponents of the momentumless regime. This may come from the fact that the mean
profile of velocity is close to the quadratic fluctuations of velocity, meaning that the
wake is governed by the mean shear but also by the turbulent fluctuations. This
regime could be better analysed with a larger angle of attack and further experiments
could be done in this regime, both on the grounds that a small angle of attack may
not be that uncommon in practice and because the different balance between mean
and turbulence-driven fluctuations might be instructive.

7. Discussion
7.1. Momentumless wakes are not universal

The true momentumless wake, where |UB − UC | � 4%, has no coherent mean profile,
and no obviously self-preserving form of the velocity fluctuations. The late-time wake
decay exponents were found to depend on the initial conditions, as data for the
cylinder with small and large propeller do not collapse. No drag wake, or any other
case outside this particular limiting condition, has a measurable dependence on initial
conditions in the late wake.

The lack of universal scaling laws in the momentumless wake is consistent with
the observation that since, unlike drag wakes, there is no balance between turbulence
production and dissipation, then turbulence parameters determined in near-wake
initial conditions can continue to affect the far-wake similarity solutions (Finson
1975). It is also consistent with experimental observations in the literature for self-
propelled bodies in non-stratified flows, showing measurable differences in the wakes
of smooth and rough-walled bodies, and between wakes where the propulsion is
provided by propellers or momentum jets (Swanson et al. 1974; Chieng et al. 1974;
Higuchi & Kubota 1990; Sirviente & Patel 2000a , b).

It is important to note that this non-universality is measured here in the late
wake. The data extend to Nt = 500 and x/D = 104 and appear to have reached their
final, asymptotic state. There is experimental (e.g. Bevilaqua & Lykoudis 1978) and
theoretical (Johansson et al. 2003) evidence showing that velocity fluctuations in
particular may not reach a self-preserving form until far downstream, and many of
the self-propelled results in the literature are for x/D < 100.

The ability of the current experiments to access and differentiate between almost
and exactly self-propelled cases is due to the simultaneous operation of independent
towing and thrust generation mechanisms. In this respect, the experiment is similar to
that of Higuchi & Kubota (1990) where the thrust-producing central jet momentum
flux was varied independently of the tunnel mean speed around a drag-producing
body. In a similar systematic variation of the degree of propulsion, these authors also
noted the unique characteristics of the precise self-propelled point.
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The definition of momentumless here is different from other possible definitions,
such as drag = thrust. Only the condition

∫ ∞
−∞〈u〉xdy = 0 (equation (3.1)) is imposed

and only at the horizontal centreplane. The fact that the self-propelled point defined
this way (UB =UC) does lead to and correspond with a unique (almost singular in
the sense of Finson 1975) flow field suggests that it is useful operationally, even if it
does not account for all possible momentum fluxes (for example if surface or internal
wave drag were significant; see next section).

7.2. Momentumless wakes are unlikely

The exact self-propelled point is rarely attained, because a number of conditions will
pull the wake far enough away from it to enter a completely different regime. The
possible perturbations include non-steady motion of the body, non-steady motion in
the environment, and drag contributions from waves at boundaries, or (most likely
in stratified flows) internally within the fluid.

The acceleration of a self-propelled body times its mass m is equal to the sum of
the drag force and the thrust force. This can be rewritten, using the expressions for
the drag force and the thrust force, as

m
dUB

dt
= Fthrust − Fdrag = cD

1
2
ρ
(
U 2

C − U 2
B

)πD2

4
. (7.1)

Here, UB is the velocity of the bluff body and UC is a velocity for which the momentum
of the wake vanishes, proportional to the angular velocity of the propeller. When
the bluff body reaches a constant speed, the acceleration is zero and the velocity
of the bluff body equals the momentumless velocity UC . The wake is thus in the
momentumless regime. However, the time needed to reach this constant speed is
infinite, and during the phase of acceleration, the wake will be better represented by
the momentum regime.

We may estimate the time needed for the wake to reach the momentumless regime.
By integrating the differential equation (7.1), the velocity UB is governed by a law
UB = UC tanh(t/τ ) with τ = 4L/cDUC . For this result, the bluff body is assumed to be
cylindrical, so that the mass m of the bluff body is equal to the density of the fluid
ρ times the section of the bluff body πD2/4 times the length L of the bluff body
times a factor 2 to take into account the added mass. The velocity of the bluff body
is thus equal to the momentumless velocity within 2% after a time t = 2.3τ , which
represents a distance close to Lacc.phase ≈ 1.6τUC ≈ 6.4L/cD . For example, a bluff body
with a length of the order of 30 m leaves a momentum wake of a length close to
one kilometre each time it changes the velocity of its propellers. It is only after this
distance that the wake is in the momentum regime.

This calculation shows that the momentum regime may be representative of the
wake of a real self-propelled body, if the velocity of the bluff body is not exactly
constant. This is the case in the acceleration and deceleration phases. But it is also the
case if the fluid has its own fluctuations of velocity, for example created by oceanic
currents. If we assume that the length needed by the bluff body to reach its cruise
velocity is much larger than the lengthscale of the currents, the bluff body will have
a constant velocity and will experience variations in its momentumless velocity: the
velocity of the currents is equal to the difference between the velocity of the bluff body
UB and the momentumless velocity UC (ucurr. = UB − UC). Suppose the fluctuations
UB − UC are small compared to the velocity of the bluff body UB , but big enough for
the wake to be in the momentum regime. Then the mean absolute amplitude of the
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wake can be obtained by taking the average of equation (4.5):

〈|U0|〉 = 6.6(Nt)−0.76F
−2/3
eff

〈
|ucurr.|1/3

〉
U

1/3
B

UB. (7.2)

If the fluctuations are of the order of 10% of the velocity of the bluff body, the mean
absolute amplitude of the wake would be equal to 46% of the amplitude of the wake
without a propeller. Thus, even if the fluctuations of velocity of the ambient fluid are
small, the momentum can be high. We thus expect the wake to be in the momentum
regime most of the time.

In the above analysis, the drag was imagined to be due only to the fluid entrained
by the bluff body, as in a non-stratified fluid. However, in a stratified fluid, there is
an additional drag due to the internal waves. This drag can be as high as 10% of the
standard drag for Froude numbers between 2 and 10 (Lofquist & Purtell 1984). If
λ=Fint.waves/Fdrag is the ratio between the drag due to the internal waves and the drag
due to the entrained fluid, the thrust force can be calculated as Fthrust = (1+λ)Fdrag for
a constant speed of the body. Since the internal waves propagate away very rapidly,
the only momentum left in the wake at late stages is J = Fdrag − Fthrust, which leads
to a new definition of the momentum thickness,

Dmom = D
√

λcD/2 = Deff

√
λ. (7.3)

The wake is now governed by the momentum created by the drag from the internal
waves, in which case all the predictions made in § 4 remain valid if the momentum
thickness is defined by (7.3). The value of the amplitude U0 is easily found by
introducing (7.3) into (4.4), so

U0

UB

= −6.6(Nt)−0.76F
−2/3
eff λ1/3. (7.4)

If the drag due to the internal waves is of the order of 10% of the drag due to the
entrained fluid, the amplitude of the wake is still equal to 46% of the amplitude of the
wake in the absence of the propeller. The stratified wake remains in the momentum
regime even when the body is self-propelled, and moving at perfectly constant speed
in a perfectly still environment.

8. Conclusions
Exactly momentumless wakes are very fragile and peculiar flows. They contain

information from the initial conditions in the late wake: these include turbulence
parameters, body/propeller geometry and angle of attack of the body. Unlike the
drag wake, there is no single rescaling based only on wake momentum flux that
will collapse measurements or predict, in a general way, the wake dynamics. In
particular, the measurable turbulent fluctuations cannot be seen as being driven by
some self-similar mean shear profile. This would bode ill for extrapolation of these
kinds of results to practical applications, but for the fact that almost always some
kind of momentum excess (positive or negative) will be present. That being the
case, this paper establishes a set of universal scaling exponents that can be used to
describe the mean flow, turbulence quantities and vortex geometry for all stratified
(momentum) wakes, regardless of their origin. Some differences with literature results
remain to be explained, but may be due in part to the difficulty of maintaining precise
momentumless experiments, and partly to the fact that the experiments described
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here apply to stages of the wake evolution that are an order of magnitude later than
for other comparable data.

REFERENCES

Afanasyev, Y. D. 2004 Wakes behind towed and self-propelled bodies: Asymptotic theory. Phys.
Fluids 16, 3235–3238.

Bevilaqua, P. M. & Lykoudis, P. S. 1978 Turbulence memory in self-preserving wakes. J. Fluid
Mech. 89, 589–606.

Blevins, R. D. 1984 Applied Fluid Dynamics Handbook . Van Nostrand Reinhold.

Bonneton, P., Chomaz, J.-M. & Hopfinger, E. J. 1993 Internal waves produced by the turbulent
wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech. 254, 23–40.

Chernykh, G. G., Demenkov, A. G. & Kostomakha, V. A. 2001 Numerical modelling of a swirling
turbulent wake behind a self-propelled body. Russian J. Numer. Anal. Math. Model. 16 (1),
19–32.

Chernykh, G. G., Ilyushin, B. B. & Voropayeva, O. F. 2003 Anisotropy decay of turbulence in a
far momentumless wake in a linearly stratified medium. Russian J. Numer. Anal. Math. Model.
18 (2), 105–116.

Chieng, C. C., Jakubowski, A. K. & Schetz, J. A. 1974 Investigation of the turbulent properties
of the wake behind self-propelled axisymmetric bodies. VPI-Aero-025. Virginia Polytechnic
Institute, Blacksburg, Virginia.

Chomaz, J. M., Bonneton, P. & Hopfinger, E. J. 1993 The structure of the near wake of a sphere
moving horizontally in a stratified fluid. J. Fluid Mech. 254, 1–21.

Diamessis, P. J., Domaradzki, A. J. & Hesthaven, J. S. 2005 A spectral multidomain penalty
method model for the simulation of high Reynolds number localized incompressible stratified
turbulence. J. Comput. Phys. 202, 298–322.

Dommermuth, D. G., Rottman, J. W., Innis, G. E. & Novikov, E. A. 2002 Numerical simulation
of the wake of a towed sphere in a weakly stratified fluid. J. Fluid Mech. 473, 83–101.

Fincham, A. M. & Spedding, G. R. 1997 Low-cost high-resolution dpiv for turbulent flows. Exps.
Fluids 23, 449–462.

Finson, M. L. 1975 Similarity behaviour of momentumless turbulent wakes. J. Fluid Mech. 71,
465–479.

Gilreath, H. E. & Brandt, A. 1985 Experiments on the generation of internal waves in a stratified
fluid. AIAA J. 23, 693–700.

Gourlay, M. J., Arendt, S. C., Fritts, D. C. & Werne, J. 2001 Numerical modeling of initially
turbulent wakes with net momentum. Phys. Fluids 13, 3783–3802.

Hassid, S. 1980 Similarity and decay laws of momentumless wakes. Phys. Fluids 23, 404–405.

Higuchi, H. & Kubota, T. 1990 Axisymmetric wakes behind a slender body including zero-
momentum configurations. Phys. Fluids A 2, 1615–1623.

Johansson, P. B. V., George, W. K. & Gourlay, M. J. 2003 Equilibrium similarity, effects of initial
conditions and local Reynolds number on the axisymmetric wake. Phys. Fluids 15, 603–617.

Lin, J. T. & Pao, Y. H. 1974 Turbulent wake of a self-propelled slender body in stratified and
non-stratified fluids: analysis and flow visualizations. APL/JHU POR-3586: Flow Research
Rep. 11.

Lin, J. T. & Pao, Y. H. 1979 Wakes in stratified fluids: a review. Annu. Rev. Fluid Mech. 11, 317–338.

Lofquist, K. E. B. & Purtell, L. P. 1984 Drag on a sphere moving horizontally through a stratified
liquid. J. Fluid Mech. 148, 271–284.

Meunier, P. & Spedding, G. R. 2004 A loss of memory in stratified momentum wakes. Phys. Fluids
16, 298–305.

Naudascher, E. 1965 Flow in the wake of self-propelled bodies and related sources of turbulence.
J. Fluid Mech. 23, 625–656.

Riley, J. R. & Lelong, M. P. 2000 Fluid motions in the presence of strong stable stratification.
Annu. Rev. Fluid Mech. 32, 613.

Schetz, J. A. & Jakubowski, A. K. 1975 Experimental study of the turbulent wake behind
self-propelled slender bodies. AIAA J. 13, 1568–1575.



256 P. Meunier and G. R. Spedding

Schooley, A. H. & Stewart, R. W. 1962 Experiments with a self-propelled body submerged in a
fluid with vertical density gradient. J. Fluid Mech. 15, 83–99.

Sirviente, A. I. & Patel, V. C. 1999 Experiments in the turbulent near wake of an axisymmetric
body. AIAA J. 37, 1670–1673.

Sirviente, A. I. & Patel, V. C. 2000a Wake of a self-propelled body, part 1: Momentumless wake.
AIAA J. 38, 611–619.

Sirviente, A. I. & Patel, V. C. 2000b Wake of a self-propelled body, part 2: Momentumless wake
with swirl. AIAA J. 38, 620–627.

Sirviente, A. I. & Patel, V. C. 2001 Turbulence in wake of a self-propelled body with and without
swirl. AIAA J. 39, 2411–2414.

Smirnov, S. A. & Voropayev, S. I. 2003 On the asymptotic theory of momentum/zero-momentum
wakes. Phys. Lett. A 307, 148–153.

Spedding, G. R. 1997 The evolution of initially turbulent bluff-body wakes at high internal froude
number. J. Fluid Mech. 337, 283–301.

Spedding, G. R. 2002 The streamwise spacing of adjacent coherent structures in stratified wakes.
Phys. Fluids 14, 3820–3828.

Spedding, G. R., Browand, F. K., Bell, R. & Chen, J. 2000 Internal waves from intermediate, or
late-wake vortices. In Stratified Flows I Proc. 5th Int. Symp. on Stratified Flows, Vancouver,
Canada: UBC. (ed. G. A. Lawrence, R. Pieters & N. Yonemitsu), pp. 113–118.

Spedding, G. R., Browand, F. K. & Fincham, A. M. 1996 Turbulence, similarity scaling and vortex
geometry in the wake of a towed sphere in a stably stratified fluid. J. Fluid Mech. 314, 53–103.

Swanson, R. C., Schetz, J. A. & Jakubowski, A. K. 1974 Turbulent wake behind slender
bodies including self-propelled configurations. VPI-Aero-024. Virginia Polytechnic Institute,
Blacksburg, Virginia.

Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. M.I.T. Press.

Voisin, B. 1991 Internal wave generation in uniformly stratified fluids. part 1. green’s function and
point sources. J. Fluid Mech. 231, 439–480.

Voropayev, S. I. & Smirnov, S. A. 2003 Vortex streets generated by a moving momentum source
in a stratified fluid. Phys. Fluids 15, 618–624.


